Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Mixture model networks

Now that we've seen a few examples of how GNNs work, let's go a step further and see how we can apply neural networks to meshes.

First, we use a patch that is defined at each point in a local system of d-dimensional pseudo-coordinates, , around x. This is referred to as a geodesic polar. On each of these coordinates, we apply a set of parametric kernels, , that produces local weights.

The kernels here differ in that they are Gaussian and not fixed, and are produced using the following equation:

These parameters ( and ) are trainable and learned.

A spatial convolution with a filter, g, can be defined as follows:

Here, is a feature at vertex i.

Previously, we mentioned geodesic polar coordinates, but what are they? Let's define them and find out. We can write them as follows:

Here, is the geodesic distance between i and j and is the...