Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Understanding the concepts in probability

Probability theory is one of the most important fields of mathematics and is essential to the understanding and creation of deep neural networks. We will explore the specifics of this statement in the coming chapters. For now, however, we will focus our effort toward gaining an intricate understanding of this field.

We use probability theory to create an understanding of how likely it is that a certain event will occur. Generally speaking, probability theory is about understanding and dealing with uncertainty.

Classical probability

Let's suppose we have a random variable that maps the results of random experiments to the properties that interest us. The aforementioned random...