Book Image

Hands-On Mathematics for Deep Learning

By : Jay Dawani
Book Image

Hands-On Mathematics for Deep Learning

By: Jay Dawani

Overview of this book

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.
Table of Contents (19 chapters)
1
Section 1: Essential Mathematics for Deep Learning
7
Section 2: Essential Neural Networks
13
Section 3: Advanced Deep Learning Concepts Simplified

Understanding the basic concepts and terminology

Graph theory was first introduced in the 18th century by Leonhard Euler to solve a famous problem known as the Königsberg bridge problem, which asks whether it is possible to walk around the Königsberg bridge while crossing over each of the seven bridges exactly once. The bridge looks as follows:

Before we move on, try it out for yourself by using your finger to trace along the path or draw it and trace it with a pencil. Did you manage to find a solution? It's alright if you didn't!

Let's stop for a moment and ask ourselves what exactly a graph is. A graph (G) is a mathematical structure made up of two sets—vertices (V(G)) and edges (E(G)). Two vertices (v1 and v2) are connected if there is an edge (e or (v1, v2)) between them. Now that that's settled, there are some rules associated with graphs...