Book Image

Hands-On Design Patterns and Best Practices with Julia

By : Tom Kwong
Book Image

Hands-On Design Patterns and Best Practices with Julia

By: Tom Kwong

Overview of this book

Design patterns are fundamental techniques for developing reusable and maintainable code. They provide a set of proven solutions that allow developers to solve problems in software development quickly. This book will demonstrate how to leverage design patterns with real-world applications. Starting with an overview of design patterns and best practices in application design, you'll learn about some of the most fundamental Julia features such as modules, data types, functions/interfaces, and metaprogramming. You'll then get to grips with the modern Julia design patterns for building large-scale applications with a focus on performance, reusability, robustness, and maintainability. The book also covers anti-patterns and how to avoid common mistakes and pitfalls in development. You'll see how traditional object-oriented patterns can be implemented differently and more effectively in Julia. Finally, you'll explore various use cases and examples, such as how expert Julia developers use design patterns in their open source packages. By the end of this Julia programming book, you'll have learned methods to improve software design, extensibility, and reusability, and be able to use design patterns efficiently to overcome common challenges in software development.
Table of Contents (19 chapters)
1
Section 1: Getting Started with Design Patterns
3
Section 2: Julia Fundamentals
7
Section 3: Implementing Design Patterns
15
Section 4: Advanced Topics

Working with expressions

Julia represents the source code of any runnable program as a tree structure. This is called an abstract syntax tree (AST). It is referred to as abstract as the tree only captures the structure of the code rather than the real syntax. 

For example, the expression x + y can be represented with a tree where the parent node identifies itself as a function call and the child nodes include the operator function + and the x and y arguments. The following is an implementation of this:

The slightly more complex expression x + 2y + 1 would look like the following diagram. While it was written with two addition operators, the expression is parsed into a single function call to the + function, for which it takes three arguments—x, 2y, and 1. Because 2y is itself an expression, it can be seen as a subtree...