Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

8. Conclusion

In this chapter, we've covered the policy gradient methods. Starting with the policy gradient theorem, we formulated four methods to train the policy network. The four methods, REINFORCE, REINFORCE with baseline, Actor-Critic, and A2C algorithms, were discussed in detail. We explored how the four methods could be implemented in Keras. We then validated the algorithms by examining the number of times the agent successfully reached its goal and in terms of the total rewards received per episode.

Similar to the deep Q-network [2] that we discussed in the previous chapter, there are several improvements that can be done on the fundamental policy gradient algorithms. For example, the most prominent one is the A3C [3], which is a multithreaded version of A2C. This enables the agent to get exposed to different experiences simultaneously and to optimize the policy and value networks asynchronously. However, in the experiments conducted by OpenAI, https://blog.openai...