Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

7. Unsupervised learning by maximizing the Mutual Information of continuous random variables

In previous sections, we learned that we can arrive at a good estimator of the MI of discrete random variables. We also demonstrated that with the help of a linear assignment algorithm, a network that performs clustering by maximizing MI leads to an accurate classifier.

If IIC is a good estimator of the MI of discrete random variables, what about continuous random variables? In this section, we discuss the Mutual Information Network Estimator (MINE) by Belghazi et al. [3] as an estimator of the MI of continuous random variables.

MINE proposes an alternative expression of KL-divergence in Equation 13.1.1 to implement an MI estimator using a neural network. In MINE, the Donsker-Varadhan (DV) representation of KL-divergence is used:

(Equation 13.7.1)

Where the supremum is taken all over the space of function T. T is an arbitrary function that maps from the input space...