Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

1. Functional API

In the Sequential model API that we first introduced in Chapter 1, Introducing Advanced Deep Learning with Keras, a layer is stacked on top of another layer. Generally, the model will be accessed through its input and output layers. We also learned that there is no simple mechanism if we find ourselves wanting to add an auxiliary input at the middle of the network, or even to extract an auxiliary output before the last layer.

That model also had its downsides; for example, it doesn't support graph-like models or models that behave like Python functions. In addition, it's also difficult to share layers between the two models. Such limitations are addressed by the Functional API and are the reason why it's a vital tool for anyone wanting to work with deep learning models.

The Functional API is guided by the following two concepts:

  • A layer is an instance that accepts a tensor as an argument. The output of a layer is another tensor....