Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

2. Deep Residual Network (ResNet)

One key advantage of deep networks is that they have a great ability to learn different levels of representation from both inputs and feature maps. In classification, segmentation, detection, and a number of other computer vision problems, learning different feature maps generally leads to a better performance.

However, you'll find that it's not easy to train deep networks because the gradient may vanish (or explode) with depth in the shallow layers during backpropagation. Figure 2.2.1 illustrates the problem of vanishing gradient. The network parameters are updated by backpropagation from the output layer to all previous layers. Since backpropagation is based on the chain rule, there is a tendency for the gradient to diminish as it reaches the shallow layers. This is due to the multiplication of small numbers, especially for small loss functions and parameter values.

The number of multiplication operations will be proportional to...