Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

4. Conclusion

This chapter discussed the general principles behind GANs so as to give you a foundation for the more advanced topics we'll now move on to, including improved GANs, disentangled representation GANs, and cross-domain GANs. We started this chapter by understanding how GANs are made up of two networks, called generator and discriminator. The role of the discriminator is to discriminate between real and fake signals. The aim of the generator is to fool the discriminator. The generator is normally combined with the discriminator to form an adversarial network. It is through training the adversarial network that the generator learns how to produce fake data that can trick the discriminator.

We also learned how GANs are easy to build but notoriously difficult to train. Two example implementations in tf.keras were presented. DCGAN demonstrated that it is possible to train GANs to generate fake images using deep CNNs. The fake images were MNIST digits. However...