Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

1. Disentangled representations

The original GAN was able to generate meaningful outputs, but the downside was that its attributes couldn't be controlled. For example, if we trained a GAN to learn a distribution of celebrity faces, the generator would produce new images of celebrity-looking people. However, there is no way to influence the generator regarding the specific attributes of the face that we want. For example, we're unable to ask the generator for a face of a female celebrity with long black hair, a fair complexion, brown eyes, and who is smiling. The fundamental reason for this is because the 100-dim noise code that we use entangles all of the salient attributes of the generator outputs. We can recall that in tf.keras, the 100-dim code was generated by the random sampling of uniform noise distribution:

        # generate fake images from noise using generator 
        # generate noise using uniform distribution
        noise...