Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

1. Principles of VAE

In a generative model, we're often interested in approximating the true distribution of our inputs using neural networks:

(Equation 8.1.1)

In the preceding equation, represents the parameters determined during training. For example, in the context of the celebrity faces dataset, this is equivalent to finding a distribution that can draw faces. Similarly, in the MNIST dataset, this distribution can generate recognizable handwritten digits.

In machine learning, to perform a certain level of inference, we're interested in finding , a joint distribution between inputs, , and latent variables, . The latent variables are not part of the dataset but instead encode certain properties observable from inputs. In the context of celebrity faces, these might be facial expressions, hairstyles, hair color, gender, and so on. In the MNIST dataset, the latent variables may represent the digit and writing styles.

is practically a distribution...