Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

2. Conditional VAE (CVAE)

Conditional VAE [2] is similar to the idea of CGAN. In the context of the MNIST dataset, if the latent space is randomly sampled, VAE has no control over which digit will be generated. CVAE is able to address this problem by including a condition (a one-hot label) of the digit to produce. The condition is imposed on both the encoder and decoder inputs.

Formally, the core equation of VAE in Equation 8.1.10 is modified to include the condition, :

(Equation 8.2.1)

Similar to VAEs, Equation 8.2.1 means that if we want to maximize the output conditioned , , then the two loss terms must be minimized:

  • Reconstruction loss of the decoder given both the latent vector and the condition.
  • KL loss between the encoder given both the latent vector and the condition and the prior distribution given the condition. Similar to a VAE, we typically choose .

Implementing CVAE requires a few modifications in the code of the VAE. For the...