Book Image

Dancing with Qubits

By : Robert S. Sutor
5 (1)
Book Image

Dancing with Qubits

5 (1)
By: Robert S. Sutor

Overview of this book

Quantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology. Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you. Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.
Table of Contents (16 chapters)
Preface
13
Afterword

11.2 What does it take to be a qubit?

In his 2000 paper ‘‘The Physical Implementation of Quantum Computation,’’ then-IBM Research Staff Member David P. DiVincenzo laid out five ‘‘requirements for the implementation of quantum computation.’’ [10]

In his words they are:

  1. A scalable physical system with well characterized qubits
  2. The ability to initialize the state of the qubits to a simple fiducial state, such as inline math
  3. Long relevant decoherence times, much longer than the gate operation time
  4. A ‘‘universal’’ set of quantum gates
  5. A qubit-specific measurement capability

Let’s discuss what each of these mean, following his lead.

Scalable physical system

In our physical system that we manufacture for quantum computing, we need to build a qubit that has two clearly delineated states, |0 and |1⟩...