Book Image

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

By : Hassi Norlen
5 (1)
Book Image

Quantum Computing in Practice with Qiskit® and IBM Quantum Experience®

5 (1)
By: Hassi Norlen

Overview of this book

IBM Quantum Experience® is a leading platform for programming quantum computers and implementing quantum solutions directly on the cloud. This book will help you get up to speed with programming quantum computers and provide solutions to the most common problems and challenges. You’ll start with a high-level overview of IBM Quantum Experience® and Qiskit®, where you will perform the installation while writing some basic quantum programs. This introduction puts less emphasis on the theoretical framework and more emphasis on recent developments such as Shor’s algorithm and Grover’s algorithm. Next, you’ll delve into Qiskit®, a quantum information science toolkit, and its constituent packages such as Terra, Aer, Ignis, and Aqua. You’ll cover these packages in detail, exploring their benefits and use cases. Later, you’ll discover various quantum gates that Qiskit® offers and even deconstruct a quantum program with their help, before going on to compare Noisy Intermediate-Scale Quantum (NISQ) and Universal Fault-Tolerant quantum computing using simulators and actual hardware. Finally, you’ll explore quantum algorithms and understand how they differ from classical algorithms, along with learning how to use pre-packaged algorithms in Qiskit® Aqua. By the end of this quantum computing book, you’ll be able to build and execute your own quantum programs using IBM Quantum Experience® and Qiskit® with Python.
Table of Contents (12 chapters)

Quantum-cheating in a coin toss? Introducing the Bell state

So, now you have the ability to toss one or more quantum coins and get a probabilistic outcome. That is all well and good, and we could picture ourselves doing some gambling with this new tool of ours, betting money against the outcome of a coin toss. But with a 50/50 outcome, the possibility of earning any real money is limited, unless, of course, we tweak the odds (that is, we cheat).

So how do you cheat in coin tossing? Well, knowing the outcome beforehand would be a clever way. And it turns out this is possible using a quantum phenomenon called entanglement.

By entangling two qubits, we connect them in a way so that they can no longer be described separately. In the most basic sense, if you have two entangled qubits and measure one of them as , the result of measuring the other one will be as.

So, how do we use this to cheat in coin tossing? Well, we create two qubits, entangle them, and then we separate them...