#### Overview of this book

C++ is a mature multi-paradigm programming language that enables you to write high-level code with a high degree of control over the hardware. Today, significant parts of software infrastructure, including databases, browsers, multimedia frameworks, and GUI toolkits, are written in C++. This book starts by introducing C++ data structures and how to store data using linked lists, arrays, stacks, and queues. In later chapters, the book explains the basic algorithm design paradigms, such as the greedy approach and the divide-and-conquer approach, which are used to solve a large variety of computational problems. Finally, you will learn the advanced technique of dynamic programming to develop optimized implementations of several algorithms discussed in the book. By the end of this book, you will have learned how to implement standard data structures and algorithms in efficient and scalable C++ 14 code.
Free Chapter
1. Lists, Stacks, and Queues
2. Trees, Heaps, and Graphs
3. Hash Tables and Bloom Filters
4. Divide and Conquer
5. Greedy Algorithms
6. Graph Algorithms I
7. Graph Algorithms II
8. Dynamic Programming I
9. Dynamic Programming II

## Variants of Trees

In the previous exercises, we've mainly looked at the binary tree, which is one of the most common kinds of trees. In a binary tree, each node can have two child nodes at most. However, a plain binary tree doesn't always serve this purpose. Next, we'll look at a more specialized version of the binary tree, called a binary search tree.

### Binary Search Tree

A binary search tree (BST) is a popular version of the binary tree. BST is nothing but a binary tree with the following properties:

• Value of the parent node ≥ value of the left child
• Value of the parent node ≤ value of the right child

In short, left child ≤ parent ≤ right child.

This leads us to an interesting feature. At any point in time, we can always say that all the elements that are less than or equal to the parent node will be on the left side, while those greater than or equal to the parent node will be on the right side. So, the problem of searching an element keeps...