#### Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Preface
Basic Packages, Functions, and Concepts
Free Chapter
Mathematical Plotting with Matplotlib
Working with Randomness and Probability
Geometric Problems
Finding Optimal Solutions
Miscellaneous Topics
Other Books You May Enjoy

# NumPy arrays

NumPy provides high performance array types and routines for manipulating these arrays in Python. These arrays are useful for processing large datasets where performance is crucial. NumPy forms the base for the numerical and scientific computing stack in Python. Under the hood, NumPy makes use of low-level libraries for working with vectors and matrices, such as the Basic Linear Algebra Subprograms (BLAS) package, and the Linear Algebra Package (LAPACK)contains more advanced routines for linear algebra.

Traditionally, the NumPy package is imported under the shorter alias np, which can be accomplished using the following import statement:

`import numpy as np`

In particular, this convention is used in the NumPy documentation and in the wider scientific Python ecosystem (SciPy, Pandas, and so on).

The basic type provided by the NumPy library is the ndarray type (henceforth referred to as a NumPy array). Generally, you won't create your...