Book Image

Applying Math with Python

By : Sam Morley
Book Image

Applying Math with Python

By: Sam Morley

Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Table of Contents (12 chapters)

Generating normally distributed random numbers

In the Generating random data recipe, we generated random floating-point numbers following a uniform distribution between 0 and 1, but not including 1. However, in most cases where we require random data, we need to instead follow one of several different distributions. Roughly speaking, a distribution function is a function f(x) that describes the probability that a random variable has a value that is below x. In practical terms, the distribution describes the spread of the random data over a range. In particular, if we create a histogram of data that follows a particular distribution, then it should roughly resemble the graph of the distribution function. This is best seen by example.

One of the most common distributions is normal distribution, which appears frequently in statistics and forms the basis for many statistical methods that we will see in Chapter 6, Working with Data and Statistics. In this recipe, we will demonstrate...