Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Preface
Basic Packages, Functions, and Concepts
Free Chapter
Mathematical Plotting with Matplotlib
Working with Randomness and Probability
Geometric Problems
Finding Optimal Solutions
Miscellaneous Topics
Other Books You May Enjoy

Analyzing conversion rates with Bayesian techniques

Bayesian probability allows us to systematically update our understanding (in a probabilistic sense) of a situation by considering data. In more technical language, we update the prior distribution (our current understanding) using data to obtain a posterior distribution. This is particularly useful, for example, when examining the proportion of users who go on to buy a product after viewing a website. We start with our prior belief distribution. For this we will use the beta distribution, which models the probability of success given numbers of successes (completed purchases) against failures (no purchases). For this recipe, we will assume that our prior belief is that we expect 25 successes from 100 views (75 fails). This means that our prior belief follows a beta (25, 75) distribution. Let's say that we wish to calculate the probability that the true rate of success is at least 33%.

Our method is roughly divided...