#### Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Preface
Basic Packages, Functions, and Concepts
Free Chapter
Mathematical Plotting with Matplotlib
Working with Randomness and Probability
Geometric Problems
Finding Optimal Solutions
Miscellaneous Topics
Other Books You May Enjoy

# Estimating parameters with Monte Carlo simulations

Monte Carlo methods broadly describe techniques that use random sampling to solve problems. These techniques are especially powerful when the underlying problem involves some kind of uncertainty. The general method involves performing large numbers of simulations, each sampling different inputs according to a given probability distribution, and then aggregating the results to give a better approximation of the true solution than any individual sample solution.

Markov Chain Monte Carlo (MCMC) is a specific kind of Monte Carlo simulation in which we construct a Markov chain of successively better approximations of the true distribution that we seek. This works by accepting or rejecting a proposed state, sampled at random, based on carefully selected acceptance probabilities at each stage, with the aim of constructing a Markov chain whose unique stationary distribution is precisely the unknown distribution that we wish to...