#### Overview of this book

Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python’s scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Preface
Basic Packages, Functions, and Concepts
Free Chapter
Mathematical Plotting with Matplotlib
Working with Randomness and Probability
Geometric Problems
Finding Optimal Solutions
Miscellaneous Topics
Other Books You May Enjoy

# Constructing Bezier curves

Bezier curves, or B-splines, are a family of curves that are extremely useful in vector graphics – for instance, they are commonly used in high-quality font packages. This is because they are defined by a small number of points that can then be used to inexpensively calculate a large number of points along the curve. This allows detail to be scaled according to the needs of the user.

In this recipe, we'll learn how to create a simple class representing a Bezier curve and compute a number of points along it.

`from math import comb as binomimport matplotlib.pyplot as pltimport numpy as np`