Book Image

Deep Reinforcement Learning with Python - Second Edition

By : Sudharsan Ravichandiran
Book Image

Deep Reinforcement Learning with Python - Second Edition

By: Sudharsan Ravichandiran

Overview of this book

With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
Table of Contents (22 chapters)
Other Books You May Enjoy

How RL differs from other ML paradigms

We can categorize ML into three types:

  • Supervised learning
  • Unsupervised learning
  • RL

In supervised learning, the machine learns from training data. The training data consists of a labeled pair of inputs and outputs. So, we train the model (agent) using the training data in such a way that the model can generalize its learning to new unseen data. It is called supervised learning because the training data acts as a supervisor, since it has a labeled pair of inputs and outputs, and it guides the model in learning the given task.

Now, let's understand the difference between supervised and reinforcement learning with an example. Consider the dog analogy we discussed earlier in the chapter. In supervised learning, to teach the dog to catch a ball, we will teach it explicitly by specifying turn left, go right, move forward seven steps, catch the ball, and so on in the form of training data. But in RL, we just...