Book Image

Deep Reinforcement Learning with Python - Second Edition

By : Sudharsan Ravichandiran
Book Image

Deep Reinforcement Learning with Python - Second Edition

By: Sudharsan Ravichandiran

Overview of this book

With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
Table of Contents (22 chapters)
Other Books You May Enjoy

Biological and artificial neurons

Before going ahead, first, we will explore what neurons are and how neurons in our brain actually work, and then we will learn about artificial neurons.

A neuron can be defined as the basic computational unit of the human brain. Neurons are the fundamental units of our brain and nervous system. Our brain encompasses approximately 100 billion neurons. Each and every neuron is connected to one another through a structure called a synapse, which is accountable for receiving input from the external environment via sensory organs, for sending motor instructions to our muscles, and for performing other activities.

A neuron can also receive inputs from other neurons through a branchlike structure called a dendrite. These inputs are strengthened or weakened; that is, they are weighted according to their importance and then they are summed together in the cell body called the soma. From the cell body, these summed inputs are processed and move...