Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning with Python

Deep Reinforcement Learning with Python - Second Edition

By : Sudharsan Ravichandiran
4.4 (20)
close
close
Deep Reinforcement Learning with Python

Deep Reinforcement Learning with Python

4.4 (20)
By: Sudharsan Ravichandiran

Overview of this book

With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
Table of Contents (22 chapters)
close
close
18
Other Books You May Enjoy
19
Index

Chapter 14 – Distributional Reinforcement Learning

  1. In a distributional RL, instead of selecting an action based on the expected return, we select the action based on the distribution of the return, which is often called the value distribution or return distribution.
  2. In categorical DQN, we feed the state and support of the distribution as the input and the network returns the probabilities of the value distribution.
  3. The authors of the categorical DQN suggest that it will be efficient to choose the number of support N as 51 and so the categorical DQN is also known as the C51 algorithm.
  4. Inverse CDF is also known as the quantile function. Inverse CDF as the name suggests is the inverse of the cumulative distribution function. That is, in CDF, given the support x, we obtain the cumulative probability , whereas in inverse CDF, given cumulative probability , we obtain the support x.
  5. In a categorical DQN, along with the state, we feed the fixed support...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Deep Reinforcement Learning with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon