Book Image

Pandas 1.x Cookbook - Second Edition

By : Matt Harrison, Theodore Petrou
Book Image

Pandas 1.x Cookbook - Second Edition

By: Matt Harrison, Theodore Petrou

Overview of this book

The pandas library is massive, and it's common for frequent users to be unaware of many of its more impressive features. The official pandas documentation, while thorough, does not contain many useful examples of how to piece together multiple commands as one would do during an actual analysis. This book guides you, as if you were looking over the shoulder of an expert, through situations that you are highly likely to encounter. This new updated and revised edition provides you with unique, idiomatic, and fun recipes for both fundamental and advanced data manipulation tasks with pandas. Some recipes focus on achieving a deeper understanding of basic principles, or comparing and contrasting two similar operations. Other recipes will dive deep into a particular dataset, uncovering new and unexpected insights along the way. Many advanced recipes combine several different features across the pandas library to generate results.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Developing a data analysis routine

Although there is no standard approach when beginning a data analysis, it is typically a good idea to develop a routine for yourself when first examining a dataset. Similar to everyday routines that we have for waking up, showering, going to work, eating, and so on, a data analysis routine helps you to quickly get acquainted with a new dataset. This routine can manifest itself as a dynamic checklist of tasks that evolves as your familiarity with pandas and data analysis expands.

Exploratory Data Analysis (EDA) is a term used to describe the process of analyzing datasets. Typically it does not involve model creation, but summarizing the characteristics of the data and visualizing them. This is not new and was promoted by John Tukey in his book Exploratory Data Analysis in 1977.

Many of these same processes are still applicable and useful to understand a dataset. Indeed, they can also help with creating machine learning models later...