Book Image

C++ High Performance - Second Edition

By : Björn Andrist, Viktor Sehr
5 (2)
Book Image

C++ High Performance - Second Edition

5 (2)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ High Performance, Second Edition guides you through optimizing the performance of your C++ apps. This allows them to run faster and consume fewer resources on the device they're running on without compromising the readability of your codebase. The book begins by introducing the C++ language and some of its modern concepts in brief. Once you are familiar with the fundamentals, you will be ready to measure, identify, and eradicate bottlenecks in your C++ codebase. By following this process, you will gradually improve your style of writing code. The book then explores data structure optimization, memory management, and how it can be used efficiently concerning CPU caches. After laying the foundation, the book trains you to leverage algorithms, ranges, and containers from the standard library to achieve faster execution, write readable code, and use customized iterators. It provides hands-on examples of C++ metaprogramming, coroutines, reflection to reduce boilerplate code, proxy objects to perform optimizations under the hood, concurrent programming, and lock-free data structures. The book concludes with an overview of parallel algorithms. By the end of this book, you will have the ability to use every tool as needed to boost the efficiency of your C++ projects.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Understanding the basics of concurrency

A concurrent program can execute multiple tasks at the same time. Concurrent programming is, in general, a lot harder than sequential programming, but there are several reasons why a program may benefit from being concurrent:

  • Efficiency: The smartphones and desktop computers of today have multiple CPU cores that can execute multiple tasks in parallel. If you manage to split a big task into subtasks that can be run in parallel, it is theoretically possible to divide the running time of the big task by the number of CPU cores. For programs that run on machines with one single core, there can still be a gain in performance if a task is I/O bound. While one subtask is waiting for I/O, other subtasks can still perform useful work on the CPU.
  • Responsiveness and low latency contexts: For applications with a graphical user interface, it is important to never block the UI so that the application becomes unresponsive. To prevent unresponsiveness...