Book Image

C++ High Performance - Second Edition

By : Björn Andrist, Viktor Sehr
5 (2)
Book Image

C++ High Performance - Second Edition

5 (2)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ High Performance, Second Edition guides you through optimizing the performance of your C++ apps. This allows them to run faster and consume fewer resources on the device they're running on without compromising the readability of your codebase. The book begins by introducing the C++ language and some of its modern concepts in brief. Once you are familiar with the fundamentals, you will be ready to measure, identify, and eradicate bottlenecks in your C++ codebase. By following this process, you will gradually improve your style of writing code. The book then explores data structure optimization, memory management, and how it can be used efficiently concerning CPU caches. After laying the foundation, the book trains you to leverage algorithms, ranges, and containers from the standard library to achieve faster execution, write readable code, and use customized iterators. It provides hands-on examples of C++ metaprogramming, coroutines, reflection to reduce boilerplate code, proxy objects to perform optimizations under the hood, concurrent programming, and lock-free data structures. The book concludes with an overview of parallel algorithms. By the end of this book, you will have the ability to use every tool as needed to boost the efficiency of your C++ projects.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

A concurrent server using Boost.Asio

This section will demonstrate how to write concurrent programs that have multiple threads of execution but only use a single OS thread. We are about to implement a rudimentary concurrent single-threaded TCP server that can handle multiple clients. There are no networking capabilities in the C++ standard library, but fortunately Boost.Asio provides us with a platform-agnostic interface for handling socket communication.

Instead of wrapping the callback-based Boost.Asio API, I will demonstrate how to use the boost::asio::awaitable class for the purpose of showing a more realistic example of how asynchronous application programming using coroutines can look. The class template boost::asio::awaitable corresponds to the Task template we created earlier; it's used as a return type for coroutines that represent asynchronous computations.

Implementing the server

The server is very simple; once a client connects, it starts updating a numeric...