Book Image

C++ High Performance - Second Edition

By : Björn Andrist, Viktor Sehr
5 (2)
Book Image

C++ High Performance - Second Edition

5 (2)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ High Performance, Second Edition guides you through optimizing the performance of your C++ apps. This allows them to run faster and consume fewer resources on the device they're running on without compromising the readability of your codebase. The book begins by introducing the C++ language and some of its modern concepts in brief. Once you are familiar with the fundamentals, you will be ready to measure, identify, and eradicate bottlenecks in your C++ codebase. By following this process, you will gradually improve your style of writing code. The book then explores data structure optimization, memory management, and how it can be used efficiently concerning CPU caches. After laying the foundation, the book trains you to leverage algorithms, ranges, and containers from the standard library to achieve faster execution, write readable code, and use customized iterators. It provides hands-on examples of C++ metaprogramming, coroutines, reflection to reduce boilerplate code, proxy objects to perform optimizations under the hood, concurrent programming, and lock-free data structures. The book concludes with an overview of parallel algorithms. By the end of this book, you will have the ability to use every tool as needed to boost the efficiency of your C++ projects.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

What to measure and how?

Optimizations almost always add complexity to your code. High-level optimizations, such as choosing algorithms and data structures, can make the intention of the code clearer, but for the most part, optimizations will make the code harder to read and maintain. We therefore want to be absolutely sure that the optimizations we add have an actual impact on what we are trying to achieve in terms of performance. Do we really need to make the code faster? In what way? Does the code really use too much memory? To understand what optimizations are possible, we need to have a good understanding of the requirements, such as latency, throughput, and memory usage.

Optimizing code is fun, but it's also very easy to get lost without any measurable gains. We will start this section with a suggested workflow to follow when tuning your code:

  1. Define a goal: It's easier to know how to optimize and when to stop optimizing if you have a well-defined...