Book Image

C++ High Performance - Second Edition

By : Björn Andrist, Viktor Sehr
5 (2)
Book Image

C++ High Performance - Second Edition

5 (2)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ High Performance, Second Edition guides you through optimizing the performance of your C++ apps. This allows them to run faster and consume fewer resources on the device they're running on without compromising the readability of your codebase. The book begins by introducing the C++ language and some of its modern concepts in brief. Once you are familiar with the fundamentals, you will be ready to measure, identify, and eradicate bottlenecks in your C++ codebase. By following this process, you will gradually improve your style of writing code. The book then explores data structure optimization, memory management, and how it can be used efficiently concerning CPU caches. After laying the foundation, the book trains you to leverage algorithms, ranges, and containers from the standard library to achieve faster execution, write readable code, and use customized iterators. It provides hands-on examples of C++ metaprogramming, coroutines, reflection to reduce boilerplate code, proxy objects to perform optimizations under the hood, concurrent programming, and lock-free data structures. The book concludes with an overview of parallel algorithms. By the end of this book, you will have the ability to use every tool as needed to boost the efficiency of your C++ projects.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Knowing your code and hot spots

The Pareto principle, or the 80/20 rule, has been applied in various fields since it was first observed by the Italian economist Vilfredo Pareto more than 100 years ago. He was able to show that 20% of the Italian population owned 80% of the land. In computer science, it has been widely used, perhaps even overused. In software optimization, it suggests that 20% of the code is responsible for 80% of the resources that a program uses.

This is, of course, only a rule of thumb and shouldn't be taken too literally. Nevertheless, for code that has not been optimized, it's common to find some relatively small hot spots that spend the vast majority of the total resources. As a programmer, this is actually good news, because it means that we can write most of our code without tweaking it for performance reasons and instead focus on keeping the code clean. It also means that when doing optimizations, we need to know where to do them...