Book Image

C++ High Performance - Second Edition

By : Björn Andrist, Viktor Sehr
5 (2)
Book Image

C++ High Performance - Second Edition

5 (2)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ High Performance, Second Edition guides you through optimizing the performance of your C++ apps. This allows them to run faster and consume fewer resources on the device they're running on without compromising the readability of your codebase. The book begins by introducing the C++ language and some of its modern concepts in brief. Once you are familiar with the fundamentals, you will be ready to measure, identify, and eradicate bottlenecks in your C++ codebase. By following this process, you will gradually improve your style of writing code. The book then explores data structure optimization, memory management, and how it can be used efficiently concerning CPU caches. After laying the foundation, the book trains you to leverage algorithms, ranges, and containers from the standard library to achieve faster execution, write readable code, and use customized iterators. It provides hands-on examples of C++ metaprogramming, coroutines, reflection to reduce boilerplate code, proxy objects to perform optimizations under the hood, concurrent programming, and lock-free data structures. The book concludes with an overview of parallel algorithms. By the end of this book, you will have the ability to use every tool as needed to boost the efficiency of your C++ projects.
Table of Contents (17 chapters)
Other Books You May Enjoy

The properties of computer memory

C++ treats memory as a sequence of cells. The size of each cell is 1 byte, and each cell has an address. Accessing a byte in memory by its address is a constant-time operation, O(1), in other words, it's independent of the total number of memory cells. On a 32-bit machine, you can theoretically address 232 bytes, that is, around 4 GB, which restricts the amount of memory a process is allowed to use at once. On a 64-bit machine, you can theoretically address 264 bytes, which is so big that there is hardly any risk of running out of addresses.

The following figure shows a sequence of memory cells laid out in memory. Each cell contains 8 bits. The hexadecimal numbers are the addresses of the memory cells:

Figure 4.1: A sequence of memory cells

Since accessing a byte by its address is an O(1) operation, from a programmer's perspective, it's tempting to believe that each memory cell is equally quick to access. This approach...