Book Image

C++ High Performance - Second Edition

By : Björn Andrist, Viktor Sehr
5 (2)
Book Image

C++ High Performance - Second Edition

5 (2)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ High Performance, Second Edition guides you through optimizing the performance of your C++ apps. This allows them to run faster and consume fewer resources on the device they're running on without compromising the readability of your codebase. The book begins by introducing the C++ language and some of its modern concepts in brief. Once you are familiar with the fundamentals, you will be ready to measure, identify, and eradicate bottlenecks in your C++ codebase. By following this process, you will gradually improve your style of writing code. The book then explores data structure optimization, memory management, and how it can be used efficiently concerning CPU caches. After laying the foundation, the book trains you to leverage algorithms, ranges, and containers from the standard library to achieve faster execution, write readable code, and use customized iterators. It provides hands-on examples of C++ metaprogramming, coroutines, reflection to reduce boilerplate code, proxy objects to perform optimizations under the hood, concurrent programming, and lock-free data structures. The book concludes with an overview of parallel algorithms. By the end of this book, you will have the ability to use every tool as needed to boost the efficiency of your C++ projects.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Memory ownership

Ownership of resources is a fundamental aspect to consider when programming. An owner of a resource is responsible for freeing the resource when it is no longer needed. A resource is typically a block of memory but could also be a database connection, a file handle, and so on. Ownership is important, regardless of which programming language you are using. However, it is more apparent in languages such as C and C++, since dynamic memory is not garbage-collected by default. Whenever we allocate dynamic memory in C++, we have to think about the ownership of that memory. Fortunately, there is now very good support in the language for expressing various types of ownership by using smart pointers, which we will cover later in this section.

The smart pointers from the standard library help us specify the ownership of dynamic variables. Other types of variables already have a defined ownership. For example, local variables are owned by the current scope. When the...