Book Image

The Python Workshop

By : Olivier Pons, Andrew Bird, Dr. Lau Cher Han, Mario Corchero Jiménez, Graham Lee, Corey Wade
Book Image

The Python Workshop

By: Olivier Pons, Andrew Bird, Dr. Lau Cher Han, Mario Corchero Jiménez, Graham Lee, Corey Wade

Overview of this book

Have you always wanted to learn Python, but never quite known how to start? More applications than we realize are being developed using Python because it is easy to learn, read, and write. You can now start learning the language quickly and effectively with the help of this interactive tutorial. The Python Workshop starts by showing you how to correctly apply Python syntax to write simple programs, and how to use appropriate Python structures to store and retrieve data. You'll see how to handle files, deal with errors, and use classes and methods to write concise, reusable, and efficient code. As you advance, you'll understand how to use the standard library, debug code to troubleshoot problems, and write unit tests to validate application behavior. You'll gain insights into using the pandas and NumPy libraries for analyzing data, and the graphical libraries of Matplotlib and Seaborn to create impactful data visualizations. By focusing on entry-level data science, you'll build your practical Python skills in a way that mirrors real-world development. Finally, you'll discover the key steps in building and using simple machine learning algorithms. By the end of this Python book, you'll have the knowledge, skills and confidence to creatively tackle your own ambitious projects with Python.
Table of Contents (13 chapters)

Functools

The final module of the standard library you are going to look at allows constructs with a minimal amount of code. In this topic, you are going to see how to use lru_cache and partial.

Caching with functools.lru_cache

Often, you have a function that is heavy to compute, in which you just want to cache results. Many developers will create their own caching implementation by using a dictionary, but that is error-prone and adds unnecessary code to our project. The functools module comes with a decorator — that is, functools.lru_cache, which is provided exactly for these situations. It is a recently used cache, with a max_size that is provided when the code is constructed. This means that you can specify a number of input values that you want to cache as a maximum, to limit the memory this function can take, or it can grow indefinitely. Once you reach the maximum number of different inputs that we want to cache, the input that was the least recently used will be...