Book Image

ROS Robotics By Example, Second Edition - Second Edition

By : Carol Fairchild, Lentin Joseph, Dr. Thomas L. Harman
Book Image

ROS Robotics By Example, Second Edition - Second Edition

By: Carol Fairchild, Lentin Joseph, Dr. Thomas L. Harman

Overview of this book

ROS is a robust robotics framework that works regardless of hardware architecture or hardware origin. It standardizes most layers of robotics functionality from device drivers to process control and message passing to software package management. But apart from just plain functionality, ROS is a great platform to learn about robotics itself and to simulate, as well as actually build, your first robots. This does not mean that ROS is a platform for students and other beginners; on the contrary, ROS is used all over the robotics industry to implement flying, walking and diving robots, yet implementation is always straightforward, and never dependent on the hardware itself. ROS Robotics has been the standard introduction to ROS for potential professionals and hobbyists alike since the original edition came out; the second edition adds a gradual introduction to all the goodness available with the Kinetic Kame release. By providing you with step-by-step examples including manipulator arms and flying robots, the authors introduce you to the new features. The book is intensely practical, with space given to theory only when absolutely necessary. By the end of this book, you will have hands-on experience on controlling robots with the best possible framework.
Table of Contents (18 chapters)
ROS Robotics By Example Second Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

Creating a custom ROS Android device interface


The Android operating system is an open source mobile platform that is widely used on smartphones and tablets. Its design is based on the Linux kernel, and its primary user control interface is via a touchscreen. This user interface consists of touch actions, such as swiping, tapping, or pinching elements on the screen. Tapping a virtual keyboard is one of the methods of entering text input. Various types of game control screens allow user interaction similar to joysticks and pushbuttons. The screen interface typically adjusts from portrait display to landscape based on the orientation in which the device is held. Sensors such as accelerometers, gyroscopes, and proximity sensors are usually available on the mobile device platform and are used by the application software.

To provide this type of interface for the user of a robot, the ROS Android metapackage has been developed and made available for use and further development.

The next sections...