Book Image

ROS Robotics By Example, Second Edition - Second Edition

By : Carol Fairchild, Lentin Joseph, Dr. Thomas L. Harman
Book Image

ROS Robotics By Example, Second Edition - Second Edition

By: Carol Fairchild, Lentin Joseph, Dr. Thomas L. Harman

Overview of this book

ROS is a robust robotics framework that works regardless of hardware architecture or hardware origin. It standardizes most layers of robotics functionality from device drivers to process control and message passing to software package management. But apart from just plain functionality, ROS is a great platform to learn about robotics itself and to simulate, as well as actually build, your first robots. This does not mean that ROS is a platform for students and other beginners; on the contrary, ROS is used all over the robotics industry to implement flying, walking and diving robots, yet implementation is always straightforward, and never dependent on the hardware itself. ROS Robotics has been the standard introduction to ROS for potential professionals and hobbyists alike since the original edition came out; the second edition adds a gradual introduction to all the goodness available with the Kinetic Kame release. By providing you with step-by-step examples including manipulator arms and flying robots, the authors introduce you to the new features. The book is intensely practical, with space given to theory only when absolutely necessary. By the end of this book, you will have hands-on experience on controlling robots with the best possible framework.
Table of Contents (18 chapters)
ROS Robotics By Example Second Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

Mission components


The components we will use in this mission include a Crazyflie 2.0 quadrotor, a Crazyradio PA, a Kinect for the Windows v2 sensor, and a workstation computer. Chapter 7, Making a Robot Fly, describes the Crazyflie and Crazyradio and their operations. Chapter 4, Navigating the World with TurtleBot, is a good introduction to a depth sensor such as the Kinect v2. It is recommended to review these chapters before beginning this mission.

Kinect for Windows v2

Kinect v2 is an infrared time of flight depth sensor that operates at a higher resolution than the Kinect for Xbox 360. The modulated infrared beam measures how long it takes for the light to travel to the object and back, providing a more accurate measurement. This sensor has improved performance in dark rooms and in sunny outdoor conditions. With a horizontal field of view (FOV) of 70 degrees and a vertical FOV of 60 degrees, the infrared sensor can accurately detect distances ranging from 0.5 to 4.5 meters (20 inches...