Book Image

Learning Malware Analysis

By : Monnappa K A
5 (1)
Book Image

Learning Malware Analysis

5 (1)
By: Monnappa K A

Overview of this book

Malware analysis and memory forensics are powerful analysis and investigation techniques used in reverse engineering, digital forensics, and incident response. With adversaries becoming sophisticated and carrying out advanced malware attacks on critical infrastructures, data centers, and private and public organizations, detecting, responding to, and investigating such intrusions is critical to information security professionals. Malware analysis and memory forensics have become must-have skills to fight advanced malware, targeted attacks, and security breaches. This book teaches you the concepts, techniques, and tools to understand the behavior and characteristics of malware through malware analysis. It also teaches you techniques to investigate and hunt malware using memory forensics. This book introduces you to the basics of malware analysis, and then gradually progresses into the more advanced concepts of code analysis and memory forensics. It uses real-world malware samples, infected memory images, and visual diagrams to help you gain a better understanding of the subject and to equip you with the skills required to analyze, investigate, and respond to malware-related incidents.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

5. Bitwise Operations


In this section, you will learn the assembly instructions that operate on the bits. The bits are numbered starting from the far right; the rightmost bit (least significant bit) has a bit position of 0, and the bit position increases toward the left. The left-most bit is called the most significant bit. The following is an example showing the bits and the bit positions for a byte, 5D (0101 1101). The same logic applies to a word, dword, and qword:

One of the bitwise instructions is the not instruction; it takes only one operand (which serves as both the source and destination) and inverts all of the bits. If eax contained FF FF 00 00 (11111111 11111111 00000000 00000000), then the following instruction would invert all of the bits and store it in the eax register. As a result, the eax would contain 00 00 FF FF (00000000 00000000 11111111 11111111):

not eax

The and, or, and xor instructions perform bitwise and, or, and xor operations and store the results in the destination...