Book Image

Machine Learning for Cybersecurity Cookbook

By : Emmanuel Tsukerman
Book Image

Machine Learning for Cybersecurity Cookbook

By: Emmanuel Tsukerman

Overview of this book

Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach.
Table of Contents (11 chapters)

Machine Learning for Cybersecurity

In this chapter, we will cover the fundamental techniques of machine learning. We will use these throughout the book to solve interesting cybersecurity problems. We will cover both foundational algorithms, such as clustering and gradient boosting trees, and solutions to common data challenges, such as imbalanced data and false-positive constraints. A machine learning practitioner in cybersecurity is in a unique and exciting position to leverage enormous amounts of data and create solutions in a constantly evolving landscape.

This chapter covers the following recipes:

  • Train-test-splitting your data
  • Standardizing your data
  • Summarizing large data using principal component analysis (PCA)
  • Generating text using Markov chains
  • Performing clustering using scikit-learn
  • Training an XGBoost classifier
  • Analyzing time series using statsmodels
  • Anomaly detection using Isolation Forest
  • Natural language processing (NLP) using hashing vectorizer and tf-idf with scikit-learn
  • Hyperparameter tuning with scikit-optimize