Book Image

Machine Learning for Cybersecurity Cookbook

By : Emmanuel Tsukerman
Book Image

Machine Learning for Cybersecurity Cookbook

By: Emmanuel Tsukerman

Overview of this book

Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach.
Table of Contents (11 chapters)

Secure and Private AI

Machine learning can help us diagnose and fight cancer, decide which school is the best for our children and make the smartest real estate investment. But you can only answer these questions with access to private and personal data, which requires a novel approach to machine learning. This approach is called Secure and Private AI and, in recent years, has seen great strides, as you will see in the following recipes.

This chapter contains the following recipes:

  • Federated learning
  • Encrypted computation
  • Private deep learning prediction
  • Testing the adversarial robustness of neural networks
  • Differential privacy using TensorFlow Privacy