Book Image

Practical Hardware Pentesting

By : Jean-Georges Valle
Book Image

Practical Hardware Pentesting

By: Jean-Georges Valle

Overview of this book

If you’re looking for hands-on introduction to pentesting that delivers, then Practical Hardware Pentesting is for you. This book will help you plan attacks, hack your embedded devices, and secure the hardware infrastructure. Throughout the book, you will see how a specific device works, explore the functional and security aspects, and learn how a system senses and communicates with the outside world. You’ll set up a lab from scratch and then gradually work towards an advanced hardware lab—but you’ll still be able to follow along with a basic setup. As you progress, you’ll get to grips with the global architecture of an embedded system and sniff on-board traffic, learn how to identify and formalize threats to the embedded system, and understand its relationship with its ecosystem. You’ll discover how to analyze your hardware and locate its possible system vulnerabilities before going on to explore firmware dumping, analysis, and exploitation. The reverse engineering chapter will get you thinking from an attacker point of view; you’ll understand how devices are attacked, how they are compromised, and how you can harden a device against the most common hardware attack vectors. By the end of this book, you will be well-versed with security best practices and understand how they can be implemented to secure your hardware.
Table of Contents (20 chapters)
1
Section 1: Getting to Know the Hardware
6
Section 2: Attacking the Hardware
12
Section 3: Attacking the Software

Demodulating the signal

At this point, GFSK and MSK are still possible candidates (since we had amplitude variations in the pulses). Let's adjust our filtering to just see the signal. Add a file sink to your GNU Radio flowgraph (grab a file sync block in the GUI and route the output of the final block to the input of the file sink; the filename is in the file sink block options) and capture an emission.

Open your output file in Audacity (File | Import | Raw data | 32-bit float) and adjust your sample rate to the one you used in your flowgraph. The file in Audacity looks as follows:

Figure 9.14 – Signal in Audacity

Figure 9.14 – Signal in Audacity

You can now trim the file to keep just the emission. Export it as Other uncompressed file | RAW headerless | 32bits float.

Now, let's work on this isolated sample to try to demodulate it.

GFSK is frequency-based, so if we try to demodulate the cut sample with a quadrature demod block, we should see something significant...