Book Image

TLS Cryptography In-Depth

By : Dr. Paul Duplys, Dr. Roland Schmitz
Book Image

TLS Cryptography In-Depth

By: Dr. Paul Duplys, Dr. Roland Schmitz

Overview of this book

TLS is the most widely used cryptographic protocol today, enabling e-commerce, online banking, and secure online communication. Written by Dr. Paul Duplys, Security, Privacy & Safety Research Lead at Bosch, and Dr. Roland Schmitz, Internet Security Professor at Stuttgart Media University, this book will help you gain a deep understanding of how and why TLS works, how past attacks on TLS were possible, and how vulnerabilities that enabled them were addressed in the latest TLS version 1.3. By exploring the inner workings of TLS, you’ll be able to configure it and use it more securely. Starting with the basic concepts, you’ll be led step by step through the world of modern cryptography, guided by the TLS protocol. As you advance, you’ll be learning about the necessary mathematical concepts from scratch. Topics such as public-key cryptography based on elliptic curves will be explained with a view on real-world applications in TLS. With easy-to-understand concepts, you’ll find out how secret keys are generated and exchanged in TLS, and how they are used to creating a secure channel between a client and a server. By the end of this book, you’ll have the knowledge to configure TLS servers securely. Moreover, you’ll have gained a deep knowledge of the cryptographic primitives that make up TLS.
Table of Contents (30 chapters)
1
Part I Getting Started
8
Part II Shaking Hands
16
Part III Off the Record
22
Part IV Bleeding Hearts and Biting Poodles
27
Bibliography
28
Index

9.3 Digital signatures based on discrete logarithms

Other than for RSA signatures, we cannot create a signature based on discrete logarithms simply by encrypting the message m with a private key. This is because in the Diffie-Hellman protocol, we only agree on a shared secret between Alice and Bob. In the ElGamal scheme, Alice uses this shared secret, but not her private key for encryption. Moreover, Alice needs Bob’s public key to compute the shared secret. A digital signature scheme should work without knowing any other public keys than the signer’s, however.

The solution is to compute a number that depends on the private key α and to add this number to the hash value of the message to be signed. This number is masked with another secret parameter k so that the private key cannot be computed from the signature. The basic scheme can be found in the paper by ElGamal [62] from 1985. However, today, ElGamal signatures are not widely used because in 1990, Schnorr...