Book Image

TLS Cryptography In-Depth

By : Dr. Paul Duplys, Dr. Roland Schmitz
Book Image

TLS Cryptography In-Depth

By: Dr. Paul Duplys, Dr. Roland Schmitz

Overview of this book

TLS is the most widely used cryptographic protocol today, enabling e-commerce, online banking, and secure online communication. Written by Dr. Paul Duplys, Security, Privacy & Safety Research Lead at Bosch, and Dr. Roland Schmitz, Internet Security Professor at Stuttgart Media University, this book will help you gain a deep understanding of how and why TLS works, how past attacks on TLS were possible, and how vulnerabilities that enabled them were addressed in the latest TLS version 1.3. By exploring the inner workings of TLS, you’ll be able to configure it and use it more securely. Starting with the basic concepts, you’ll be led step by step through the world of modern cryptography, guided by the TLS protocol. As you advance, you’ll be learning about the necessary mathematical concepts from scratch. Topics such as public-key cryptography based on elliptic curves will be explained with a view on real-world applications in TLS. With easy-to-understand concepts, you’ll find out how secret keys are generated and exchanged in TLS, and how they are used to creating a secure channel between a client and a server. By the end of this book, you’ll have the knowledge to configure TLS servers securely. Moreover, you’ll have gained a deep knowledge of the cryptographic primitives that make up TLS.
Table of Contents (30 chapters)
1
Part I Getting Started
8
Part II Shaking Hands
16
Part III Off the Record
22
Part IV Bleeding Hearts and Biting Poodles
27
Bibliography
28
Index

11.2 What cryptographic guarantees does encryption provide?

On a more fundamental level, the attacks described in the above examples work because Alice and Bob, as illustrated in Figure 11.1, can only use encryption ek.

Intuitively, it might seem as if encryption protects Alice’s and Bob’s messages against manipulation by Mallory because the ciphertext hides the plaintext message and Mallory cannot know how to manipulate the encrypted message in a meaningful way. But this is completely wrong! Encryption provides no guarantees for message integrity or authenticity.

We can convince ourselves that this is indeed the case by taking a closer look at the one-time pad encryption scheme from Chapter 4, Encryption and Decryption.

Recall that the one-time pad encrypts a message m under the key k as:

c = m ⊕ k

where ⊕ denotes a bit-wise exclusive OR (XOR) operation. If you take two bits b0,b1 and apply the XOR operation to them, b0b1 will yield zero whenever both...