Book Image

Information Security Handbook - Second Edition

By : Darren Death
Book Image

Information Security Handbook - Second Edition

By: Darren Death

Overview of this book

Information Security Handbook is a practical guide that’ll empower you to take effective actions in securing your organization’s assets. Whether you are an experienced security professional seeking to refine your skills or someone new to the field looking to build a strong foundation, this book is designed to meet you where you are and guide you toward improving your understanding of information security. Each chapter addresses the key concepts, practical techniques, and best practices to establish a robust and effective information security program. You’ll be offered a holistic perspective on securing information, including risk management, incident response, cloud security, and supply chain considerations. This book has distilled years of experience and expertise of the author, Darren Death, into clear insights that can be applied directly to your organization’s security efforts. Whether you work in a large enterprise, a government agency, or a small business, the principles and strategies presented in this book are adaptable and scalable to suit your specific needs. By the end of this book, you’ll have all the tools and guidance needed to fortify your organization’s defenses and expand your capabilities as an information security practitioner.
Table of Contents (16 chapters)

Threats

Cybersecurity threats are risks or vulnerabilities compromising the confidentiality, integrity, or availability of digital information, systems, or networks. Cyber threats can be caused by various sources, including cybercriminals, hackers, insiders, or even accidental actions by employees. With the proliferation of technology and the growing reliance on digital infrastructure, cybersecurity threats have become more sophisticated, frequent, and costly, posing significant risks to individuals, organizations, and even entire nations.

The cybersecurity threat landscape is constantly evolving, and the specific threats that organizations face can vary depending on factors such as industry, size, location, and other factors. Coming up are some of the most common and dangerous cybersecurity threats that organizations may face.

Phishing attacks

Phishing is a common cyber-attack that aims to trick individuals into providing sensitive information, such as usernames, passwords, credit card details, or personal information. Phishing attacks are typically carried out through deceptive email messages, including links and attachments that mimic legitimate sources, such as banks, social media, or online stores. Phishing attacks rely on social engineering tactics to exploit human weaknesses, such as curiosity, urgency, or trust, and can cause significant damage to individuals and organizations.

A common type of phishing attack is spear-phishing, which targets specific individuals or organizations with personalized messages tailored to their interests, job roles, or relationships. Spear-phishing attacks often involve extensive research and surveillance to gather information about the target, such as their social media profiles, job titles, or recent events, to make the message appear more convincing and relevant. Business email compromise (BEC) is another type of phishing attack that targets organizations with messages that appear to be from a trusted source, such as an internal organizational division, a supplier, or a partner. BEC attacks often involve impersonating a legitimate group or individual or using social engineering tactics to trick employees into providing sensitive information or authorizing fraudulent payments. BEC attacks can cause significant financial losses, especially involving wire transfers or electronic payments.

The consequences of phishing attacks can be severe for individuals and organizations. Phishing attacks can result in financial losses, identity theft, or reputational damage, especially if they involve sensitive data or high-profile targets. Phishing attacks can also lead to further cyber-attacks, such as malware infections or ransomware attacks, that can cause even more damage. Technical measures such as antivirus software or spam filters can help block or detect phishing messages. Organizational measures, such as policies, procedures, or training, can help raise awareness and promote good cybersecurity practices, such as using strong passwords, verifying sources, or reporting suspicious activities.

Ransomware

Ransomware is malicious software (malware) that encrypts an organization’s data and demands payment for the decryption key. Ransomware attacks can devastate an organization. These attacks can cause significant financial losses, reputational damage, or even operational shutdowns. No organization is immune to the threat of ransomware, as small businesses and large enterprises can fall victim to these attacks.

Ransomware attacks typically begin with the infection of a single device or system, such as a workstation, server, or mobile device, through a vulnerability or a phishing attack. Once the malware is installed, it encrypts the infected machine’s data, making it inaccessible to the user or the organization. The ransomware then displays a message or a warning, usually in the form of a pop-up window or a text file, that demands payment in exchange for the decryption key. The ransomware message may also threaten to delete or leak the data if the ransom is not paid within a specific time frame.

Ransomware attacks can be carried out through various types of malware. Some examples of these malware variants are CryptoLocker, WannaCry, and Locky. Some ransomware attacks may use advanced techniques, such as obfuscation, encryption, or polymorphism, to evade detection by security software or to make it more difficult to recover the encrypted data. Ransomware attacks can also involve anonymous payment methods, such as Bitcoin or other cryptocurrencies, making tracking the attacker’s payment or identity more difficult. The consequences of a ransomware attack can be severe, both for the affected organization and its customers, partners, or suppliers. Ransomware attacks can cause significant financial losses, as organizations may need to pay a ransom or incur additional costs for data recovery, forensic analysis, or legal fees.

Protection can include anti-malware software, intrusion prevention systems, and verified data backups, allowing organizations to recover their data in case of a ransomware attack. It is important to note that data backups must be regularly tested and updated to ensure their effectiveness and that a ransomware attack has not adversely affected an organization’s backups. In addition to prevention and mitigation activities, an organization can prepare for a ransomware attack by ensuring the cybersecurity incident response plan includes ransomware-specific considerations. This plan will help an organization detect, contain, and recover from a ransomware attack, minimizing damage and reducing downtime.

Malware

Malware is a broad term that describes any software designed to harm or disrupt computer systems, networks, or devices. Malware is a significant cybersecurity threat that can take many forms, including viruses, worms, trojans, spyware, adware, and ransomware. Malware can cause substantial damage to organizations and individuals by stealing data, damaging systems, or disrupting operations.

A common type of malware is a virus. A virus is a self-replicating program that can infect files, applications, or system boot sectors. Once a virus infects a system, it can spread rapidly, causing significant damage to a system’s files. Another type of malware is a worm, a self-replicating program that can quickly spread across networks, infecting multiple devices and systems. Worms can cause significant damage to networks by consuming bandwidth or causing system crashes. Trojans are a type of malware that masquerades as legitimate software or applications. Once a trojan infects a system, it can steal data, create backdoors, or download additional malware. Spyware is malware that collects data from a device or system without the user’s knowledge or consent. Spyware can collect sensitive data such as passwords, credit card numbers, or personal information.

Malware attacks can cause a range of problems for both individuals and organizations, including financial losses, reputational harm, and identity theft. The impact can be especially severe if the malware targets or exfiltrates sensitive data or high-profile targets. Additionally, malware attacks can trigger further cyber-attacks, such as ransomware attacks, which can result in even more significant damage.

Distributed denial-of-service attacks

Distributed denial-of-service (DDoS) attacks are a significant cybersecurity threat that can disrupt online services and cause substantial financial losses for businesses. DDoS attacks involve overwhelming a website, server, or network with traffic from multiple sources, rendering it inaccessible to legitimate users. DDoS attacks can be carried out through various means, such as botnets, DNS amplification attacks, or application layer attacks.

Botnets can be used to execute DDoS attacks. Botnets are networks of compromised devices, such as computers, smartphones, or IoT devices, that a single attacker or group of attackers controls. Botnets can launch DDoS attacks by sending a large volume of traffic to the target, overwhelming its resources, and making it unavailable to legitimate users. Botnets can be created through malware infections, phishing scams, or social engineering tactics.

A DNS amplification attack exploits Domain Name System (DNS) vulnerabilities to generate massive traffic and overwhelm a target server or network. In a DNS amplification attack, the attacker sends a large number of DNS queries to open DNS resolvers, requesting information about a specific domain name. The attacker spoofs the source IP address of the requests so they appear to come from the target server or network. When the open DNS resolver receives the request, it responds with a much larger packet of data than the original query. This attack can occur because many DNS responses are larger than the corresponding queries due to the use of Domain Name System Security Extensions (DNSSEC) and other security measures. The attacker can then use the amplified response to flood the target server or network with traffic, overwhelming its resources and making it inaccessible to legitimate users.

Application layer DDoS attacks, also known as Layer 7 DDoS attacks, are DDoS attacks that target the application layer of a website or server. Unlike other DDoS attacks that focus on the network layer, application layer attacks aim to exhaust the resources of the target server or website by overwhelming it with requests that mimic legitimate user traffic. Application layer DDoS attacks use bots or malware that flood the target website or server with HTTP, HTTPS, or other application layer requests, such as database queries or user registrations. These requests can be challenging to distinguish from legitimate traffic because they resemble legitimate user activity, making them hard to block or filter.

Content Delivery Networks (CDNs) can be used to defend against DDoS attacks by distributing the traffic across multiple servers, reducing the attack’s impact on any single server. CDNs work by caching content on multiple servers geographically so that users can access the content from a server closest to their location. This architecture not only speeds up the delivery of content but also provides redundancy, making it more difficult for attackers to overwhelm any single server.

Insider threats

Insider threats refer to malicious activities or negligence by employees, contractors, or business partners who access sensitive information, systems, or networks and can be challenging to detect and mitigate. There are several types of insider threats, including accidental or unintentional, negligent, and malicious insider threats:

  • Accidental or unintentional insider threats occur when an employee or contractor inadvertently causes harm or damage to the organization by misconfiguring a system or sending an email to the wrong recipient.
  • Negligent insider threats occur when employees or contractors disregard security policies or procedures, such as using weak passwords or clicking suspicious links.
  • Malicious insider threats are the most dangerous and occur when employees or contractors intentionally cause harm or damage to the organization. Malicious insider threats can take many forms, including the theft of sensitive information, sabotage of systems or networks, or unauthorized access to sensitive data.

Organizations can implement security controls to monitor and detect insider threats. These controls can include access controls, such as role-based access control, multi-factor authentication, or privilege escalation monitoring, to ensure that employees only have access to the information and systems they need to perform their job duties. Organizations can also implement security monitoring and auditing tools, such as log analysis and anomaly detection, to detect unusual behavior or activity by employees or contractors.

Advanced Persistent Threats

Advanced Persistent Threats (APTs) are a type of cyber-attack that targets specific organizations, governments, or individuals to gain unauthorized access to sensitive information or cause harm to the target. Unlike cyber-attacks that use simple and indiscriminate techniques, APTs are highly targeted and sophisticated, often relying on multiple stages of attacks and leveraging zero-day vulnerabilities to evade detection. APTs typically involve a well-funded, well-organized, and highly skilled group of hackers willing to invest significant time and resources in their attack campaigns.

Several characteristics define APTs. Some of them are as follows:

  • APTs are highly targeted, allowing the attackers to understand the target’s infrastructure, operations, and vulnerabilities, making it easier to develop customized attack strategies
  • APTs are also persistent and designed to remain undetected for an extended period
  • APTs may use lateral movement techniques, moving laterally across the network, exploiting different vulnerabilities, and hiding their activities

Detecting APTs can be challenging, as they are designed to remain undetected for an extended period. Traditional security measures such as firewalls and anti-malware software may not be sufficient to detect APTs. Instead, organizations must adopt a more proactive approach involving continuous monitoring, threat intelligence, and advanced analytics. This approach can help organizations detect APTs early in the attack life cycle, allowing them to take appropriate action before significant damage occurs.

Social engineering attacks

Social engineering attacks are cybersecurity threats that target human vulnerabilities rather than exploit technical weaknesses in an organization’s infrastructure. Social engineering attacks rely on psychological manipulation to deceive individuals into disclosing sensitive information or performing actions that may compromise an organization’s security. Social engineering attacks typically involve using various tactics to deceive individuals, including phishing.

Social engineering attacks rely on deception and manipulation to achieve their objectives. Attackers use various tactics, such as phishing emails, pretexting phone calls, and baiting schemes, to deceive individuals into performing actions that may compromise an organization’s security. These attacks are typically low-tech and do not require significant technical expertise. Attackers can use simple tactics such as sending a convincing phishing email or a pretexting phone call to achieve their objectives.

Detecting social engineering attacks can be challenging as they rely on deception and manipulation to achieve their objectives. Organizations must embrace a security culture with regular employee training on cybersecurity best practices and incident response procedures. This training can help employees identify and respond to social engineering attacks, reducing the risk of successful attacks.

Supply chain attacks

Supply chain attacks are cybersecurity threats that target the interconnected network of vendors and suppliers supporting an organization’s operations. These attacks typically exploit vulnerabilities in the supply chain to gain access to sensitive information or systems within the organization.

Supply chain attacks often exploit vulnerabilities in third-party vendors or suppliers that access an organization’s systems or data. These vendors may be small or medium-sized businesses with limited security resources, making them attractive targets for attackers. Supply chain attacks can be challenging to detect, as they often involve a series of compromises across multiple organizations. Attackers may use multiple layers of obfuscation and encryption to evade detection and gain access to sensitive information. Compromised vendors can be used as entry points into an organization’s network, allowing attackers to move laterally and access sensitive information or systems.

Detecting supply chain attacks can be challenging as such organizations need to adopt a more proactive approach that includes supply chain risk assessments, vendor management, and threat intelligence. Supply chain risk assessments can help organizations identify and mitigate potential vulnerabilities in their supply chain. Assessments may include evaluating the security practices of vendors and suppliers and analyzing the potential impact of a supply chain compromise on the organization’s operations. Organizations must establish clear policies and procedures for working with vendors and suppliers, including security controls, data protection, and incident response requirements. Regular monitoring and auditing of vendor activities can help detect suspicious behavior and mitigate the risk of a supply chain attack.

Safeguarding sensitive information, systems, and networks is a shared responsibility that demands constant vigilance and adaptability. By staying informed about the latest threat trends, individuals and organizations can improve their defenses and navigate the ever-changing cybersecurity landscape more confidently.