Book Image

Modern Cryptography for Cybersecurity Professionals

By : Lisa Bock
Book Image

Modern Cryptography for Cybersecurity Professionals

By: Lisa Bock

Overview of this book

In today's world, it is important to have confidence in your data storage and transmission strategy. Cryptography can provide you with this confidentiality, integrity, authentication, and non-repudiation. But are you aware of just what exactly is involved in using cryptographic techniques? Modern Cryptography for Cybersecurity Professionals helps you to gain a better understanding of the cryptographic elements necessary to secure your data. The book begins by helping you to understand why we need to secure data and how encryption can provide protection, whether it be in motion or at rest. You'll then delve into symmetric and asymmetric encryption and discover how a hash is used. As you advance, you'll see how the public key infrastructure (PKI) and certificates build trust between parties, so that we can confidently encrypt and exchange data. Finally, you'll explore the practical applications of cryptographic techniques, including passwords, email, and blockchain technology, along with securely transmitting data using a virtual private network (VPN). By the end of this cryptography book, you'll have gained a solid understanding of cryptographic techniques and terms, learned how symmetric and asymmetric encryption and hashed are used, and recognized the importance of key management and the PKI.
Table of Contents (16 chapters)
1
Section 1: Securing Our Data
5
Section 2: Understanding Cryptographic Techniques
9
Section 3: Applying Cryptography in Today's World

Identifying optimal hash properties

In order for a hash algorithm to be effective, it must be able to generate a hash algorithm quickly and efficiently. In addition, it must have several other properties to provide the best security. An optimal algorithm must be able to stand the test of time and remain a solid algorithm, even with advances in technology.

In this section, we'll outline and explain some of the desired properties of an exceptional hash algorithm, such as non-reversibility, collision resistance, and determinism.

Let's start with the non-reversibility or one-way property.

Generating a one-way function

When we say one-way, we mean it. A variable-length block of data goes into the function, and a fixed-length hash is returned as the output. The output has no resemblance to the original block of data in any way. Nor is there any way to reconstruct the data to become the original. This non-reversible property is optimal as it makes a more secure hash...