Book Image

Learn Kubernetes Security

By : Kaizhe Huang, Pranjal Jumde
5 (1)
Book Image

Learn Kubernetes Security

5 (1)
By: Kaizhe Huang, Pranjal Jumde

Overview of this book

Kubernetes is an open source orchestration platform for managing containerized applications. Despite widespread adoption of the technology, DevOps engineers might be unaware of the pitfalls of containerized environments. With this comprehensive book, you'll learn how to use the different security integrations available on the Kubernetes platform to safeguard your deployments in a variety of scenarios. Learn Kubernetes Security starts by taking you through the Kubernetes architecture and the networking model. You'll then learn about the Kubernetes threat model and get to grips with securing clusters. Throughout the book, you'll cover various security aspects such as authentication, authorization, image scanning, and resource monitoring. As you advance, you'll learn about securing cluster components (the kube-apiserver, CoreDNS, and kubelet) and pods (hardening image, security context, and PodSecurityPolicy). With the help of hands-on examples, you'll also learn how to use open source tools such as Anchore, Prometheus, OPA, and Falco to protect your deployments. By the end of this Kubernetes book, you'll have gained a solid understanding of container security and be able to protect your clusters from cyberattacks and mitigate cybersecurity threats.
Table of Contents (19 chapters)
Section 1: Introduction to Kubernetes
Section 2: Securing Kubernetes Deployments and Clusters
Section 3: Learning from Mistakes and Pitfalls

Managing secrets with Vault

Secrets management is a big topic, and many open source and proprietary solutions have been developed to help solve the secrets management problem on different platforms. So, in Kubernetes, its built-in Secret object is used to store secret data, and the actual data is stored in etcd along with other Kubernetes objects. By default, the secret data is stored in plaintext (encoded format) in etcd. etcd can be configured to encrypt secrets at rest. Similarly, if etcd is not configured to encrypt communication using Transport Layer Security (TLS), secret data is transferred in plaintext too. Unless the security requirement is very low, it is recommended to use a third-party solution to manage secrets in a Kubernetes cluster.

In this section, we're going to introduce Vault, a Cloud Native Computing Foundation (CNCF) secrets management project. Vault supports secure storage of secrets, dynamic secrets' generation, data encryption, key revocation,...