Book Image

Learn Kubernetes Security

By : Kaizhe Huang, Pranjal Jumde
5 (2)
Book Image

Learn Kubernetes Security

5 (2)
By: Kaizhe Huang, Pranjal Jumde

Overview of this book

Kubernetes is an open source orchestration platform for managing containerized applications. Despite widespread adoption of the technology, DevOps engineers might be unaware of the pitfalls of containerized environments. With this comprehensive book, you'll learn how to use the different security integrations available on the Kubernetes platform to safeguard your deployments in a variety of scenarios. Learn Kubernetes Security starts by taking you through the Kubernetes architecture and the networking model. You'll then learn about the Kubernetes threat model and get to grips with securing clusters. Throughout the book, you'll cover various security aspects such as authentication, authorization, image scanning, and resource monitoring. As you advance, you'll learn about securing cluster components (the kube-apiserver, CoreDNS, and kubelet) and pods (hardening image, security context, and PodSecurityPolicy). With the help of hands-on examples, you'll also learn how to use open source tools such as Anchore, Prometheus, OPA, and Falco to protect your deployments. By the end of this Kubernetes book, you'll have gained a solid understanding of container security and be able to protect your clusters from cyberattacks and mitigate cybersecurity threats.
Table of Contents (19 chapters)
1
Section 1: Introduction to Kubernetes
7
Section 2: Securing Kubernetes Deployments and Clusters
14
Section 3: Learning from Mistakes and Pitfalls

Chapter 13

  1. Cluster administrators keep track of CVE IDs to ensure that the Kubernetes cluster is not vulnerable to a publicly known issue. Security researchers study the references section to understand the technical details of the issue to develop mitigations for a CVE. Lastly, attackers study the references section to find unpatched variations or use similar techniques to discover issues in other parts of the code.
  2. Client-side issues often lead to data exfiltration or code execution on the client side. Build machines or machines of cluster administrators often contain sensitive data, and an attack on such machines can have a significant economic impact on the organization.
  3. DoS issues on api-server can lead to disruption of the availability of the entire cluster.
  4. Unauthenticated DoS issues are more severe than authenticated DoS issues. Ideally, unauthenticated users should not be able to communicate with api-server. If an unauthenticated user is able to send requests...