Book Image

Learn Kubernetes Security

By : Kaizhe Huang, Pranjal Jumde
5 (1)
Book Image

Learn Kubernetes Security

5 (1)
By: Kaizhe Huang, Pranjal Jumde

Overview of this book

Kubernetes is an open source orchestration platform for managing containerized applications. Despite widespread adoption of the technology, DevOps engineers might be unaware of the pitfalls of containerized environments. With this comprehensive book, you'll learn how to use the different security integrations available on the Kubernetes platform to safeguard your deployments in a variety of scenarios. Learn Kubernetes Security starts by taking you through the Kubernetes architecture and the networking model. You'll then learn about the Kubernetes threat model and get to grips with securing clusters. Throughout the book, you'll cover various security aspects such as authentication, authorization, image scanning, and resource monitoring. As you advance, you'll learn about securing cluster components (the kube-apiserver, CoreDNS, and kubelet) and pods (hardening image, security context, and PodSecurityPolicy). With the help of hands-on examples, you'll also learn how to use open source tools such as Anchore, Prometheus, OPA, and Falco to protect your deployments. By the end of this Kubernetes book, you'll have gained a solid understanding of container security and be able to protect your clusters from cyberattacks and mitigate cybersecurity threats.
Table of Contents (19 chapters)
1
Section 1: Introduction to Kubernetes
7
Section 2: Securing Kubernetes Deployments and Clusters
14
Section 3: Learning from Mistakes and Pitfalls

Chapter 1: Kubernetes Architecture

Traditional applications, such as web applications, are known to follow a modular architecture, splitting code into an application layer, business logic, a storage layer, and a communication layer. Despite the modular architecture, the components are packaged and deployed as a monolith. A monolith application, despite being easy to develop, test, and deploy, is hard to maintain and scale. This led to the growth of microservices architecture. Development of container runtimes like Docker and Linux Containers (LXC) has eased deployment and maintenance of applications as microservices.

Microservices architecture splits application deployment into small and interconnected entities. The increasing popularity of microservices architecture has led to the growth of orchestration platforms such as Apache Swarm, Mesos, and Kubernetes. Container orchestration platforms help manage containers in large and dynamic environments.

Kubernetes is an open source...