Book Image

Learn Kubernetes Security

By : Kaizhe Huang, Pranjal Jumde
5 (1)
Book Image

Learn Kubernetes Security

5 (1)
By: Kaizhe Huang, Pranjal Jumde

Overview of this book

Kubernetes is an open source orchestration platform for managing containerized applications. Despite widespread adoption of the technology, DevOps engineers might be unaware of the pitfalls of containerized environments. With this comprehensive book, you'll learn how to use the different security integrations available on the Kubernetes platform to safeguard your deployments in a variety of scenarios. Learn Kubernetes Security starts by taking you through the Kubernetes architecture and the networking model. You'll then learn about the Kubernetes threat model and get to grips with securing clusters. Throughout the book, you'll cover various security aspects such as authentication, authorization, image scanning, and resource monitoring. As you advance, you'll learn about securing cluster components (the kube-apiserver, CoreDNS, and kubelet) and pods (hardening image, security context, and PodSecurityPolicy). With the help of hands-on examples, you'll also learn how to use open source tools such as Anchore, Prometheus, OPA, and Falco to protect your deployments. By the end of this Kubernetes book, you'll have gained a solid understanding of container security and be able to protect your clusters from cyberattacks and mitigate cybersecurity threats.
Table of Contents (19 chapters)
1
Section 1: Introduction to Kubernetes
7
Section 2: Securing Kubernetes Deployments and Clusters
14
Section 3: Learning from Mistakes and Pitfalls

Threat actors in Kubernetes environments

A threat actor is an entity or code executing in the system that the asset should be protected from. From a defense standpoint, you first need to understand who your potential enemies are, or your defense strategy will be too vague. Threat actors in Kubernetes environments can be broadly classified into three categories:

  1. End user: An entity that can connect to the application. The entry point for this actor is usually the load balancer or ingress. Sometimes, pods, containers, or NodePorts may be directly exposed to the internet, adding more entry points for the end user.
  2. Internal attacker: An entity that has limited access inside the Kubernetes cluster. Malicious containers or pods spawned within the cluster are examples of internal attackers.
  3. Privileged attacker: An entity that has administrator access inside the Kubernetes cluster. Infrastructure administrators, compromised kube-apiserver instances, and malicious nodes are...