Book Image

Learn Kubernetes Security

By : Kaizhe Huang, Pranjal Jumde
5 (1)
Book Image

Learn Kubernetes Security

5 (1)
By: Kaizhe Huang, Pranjal Jumde

Overview of this book

Kubernetes is an open source orchestration platform for managing containerized applications. Despite widespread adoption of the technology, DevOps engineers might be unaware of the pitfalls of containerized environments. With this comprehensive book, you'll learn how to use the different security integrations available on the Kubernetes platform to safeguard your deployments in a variety of scenarios. Learn Kubernetes Security starts by taking you through the Kubernetes architecture and the networking model. You'll then learn about the Kubernetes threat model and get to grips with securing clusters. Throughout the book, you'll cover various security aspects such as authentication, authorization, image scanning, and resource monitoring. As you advance, you'll learn about securing cluster components (the kube-apiserver, CoreDNS, and kubelet) and pods (hardening image, security context, and PodSecurityPolicy). With the help of hands-on examples, you'll also learn how to use open source tools such as Anchore, Prometheus, OPA, and Falco to protect your deployments. By the end of this Kubernetes book, you'll have gained a solid understanding of container security and be able to protect your clusters from cyberattacks and mitigate cybersecurity threats.
Table of Contents (19 chapters)
1
Section 1: Introduction to Kubernetes
7
Section 2: Securing Kubernetes Deployments and Clusters
14
Section 3: Learning from Mistakes and Pitfalls

Threats in Kubernetes clusters

With our new understanding of Kubernetes components and threat actors, we're moving on to the journey of threat modeling a Kubernetes cluster. In the following table, we cover the major Kubernetes components, nodes, and pods. Nodes and pods are the fundamental Kubernetes objects that run workloads. Note that all these components are assets and should be protected from threats. Any of these components getting compromised could lead to the next step of an attack, such as privilege escalation. Also, note that kube-apiserver and etcd are the brain and heart of a Kubernetes cluster. If either of them were to get compromised, that would be game over.

The following table highlights the threats in the default Kubernetes configuration. This table also highlights how developers and cluster administrators can protect their assets from these threats:

This table...