Book Image

Learn Kubernetes Security

By : Kaizhe Huang, Pranjal Jumde
5 (1)
Book Image

Learn Kubernetes Security

5 (1)
By: Kaizhe Huang, Pranjal Jumde

Overview of this book

Kubernetes is an open source orchestration platform for managing containerized applications. Despite widespread adoption of the technology, DevOps engineers might be unaware of the pitfalls of containerized environments. With this comprehensive book, you'll learn how to use the different security integrations available on the Kubernetes platform to safeguard your deployments in a variety of scenarios. Learn Kubernetes Security starts by taking you through the Kubernetes architecture and the networking model. You'll then learn about the Kubernetes threat model and get to grips with securing clusters. Throughout the book, you'll cover various security aspects such as authentication, authorization, image scanning, and resource monitoring. As you advance, you'll learn about securing cluster components (the kube-apiserver, CoreDNS, and kubelet) and pods (hardening image, security context, and PodSecurityPolicy). With the help of hands-on examples, you'll also learn how to use open source tools such as Anchore, Prometheus, OPA, and Falco to protect your deployments. By the end of this Kubernetes book, you'll have gained a solid understanding of container security and be able to protect your clusters from cyberattacks and mitigate cybersecurity threats.
Table of Contents (19 chapters)
Section 1: Introduction to Kubernetes
Section 2: Securing Kubernetes Deployments and Clusters
Section 3: Learning from Mistakes and Pitfalls

Securing etcd

etcd is a key-value store that is used by Kubernetes for data storage. It stores the state, configuration, and secrets of the Kubernetes cluster. Only kube-apiserver should have access to etcd. Compromise of etcd can lead to a cluster compromise.

To secure etcd, you should do the following:

  • Restrict node access: Use Linux firewalls to ensure that only nodes that need access to etcd are allowed access.
  • Ensure the API server uses TLS: --cert-file and --key-file ensure that requests to etcd are secure.
  • Use valid certificates: --client-cert-auth ensures that communication from clients is made using valid certificates, and setting --auto-tls to false ensures that self-signed certificates are not used.
  • Encrypt data at rest: --encryption-provider-config is passed to the API server to ensure that data is encrypted at rest in etcd.

On Minikube, the etcd configuration looks like this:

$ ps aux | grep etcd
root      ...