Book Image

Mastering vRealize Operations Manager - Second Edition

By : Spas Kaloferov, Chris Slater, Scott Norris
Book Image

Mastering vRealize Operations Manager - Second Edition

By: Spas Kaloferov, Chris Slater, Scott Norris

Overview of this book

In the modern IT world, the criticality of managing the health, efficiency, and compliance of virtualized environments is more important than ever. With vRealize Operations Manager 6.6, you can make a difference to your business by being reactive rather than proactive. Mastering vRealize Operations Manager helps you streamline your processes and customize the environment to suit your needs. You will gain visibility across all devices in the network and retain full control. With easy-to-follow, step-by-step instructions and support images, you will quickly master the ability to manipulate your data and display it in a way that best suits you and your business or technical requirements. This book not only covers designing, installing, and upgrading vRealize Operations 6.6, but also gives you a deep understanding of its building blocks: badges, alerts, super metrics, views, dashboards, management packs, and plugins. With the new vRealize Operations 6.6 troubleshooting capabilities, capacity planning, intelligent workload placement, and additional monitoring capabilities, this book is aimed at ensuring you get the knowledge to manage your virtualized environment as effectively as possible.
Table of Contents (17 chapters)

High Availability in vRealize Operations 6.6

One of the features that came in vRealize Operations 6.0 was the ability to configure the cluster in an HA mode to prevent data loss. This still remains an impressive feature, used even today in vRealize Operations 6.6. Enabling HA makes two major changes to the Operations Manager cluster:

  • The primary effect of HA is that all sharded data is duplicated by the Controller layer to a primary and backup copy in both the GemFire cache and GemFire Persistence layers.
  • The secondary effect is that the master replica is created on a chosen data node for replication of the database. This node then takes over the role of the master node in the event that the original master fails.

How does HA and data duplication work?

As we just said, HA duplicates all incoming resource data so that two copies exist instead of one in both the GemFire cache and Persistence layers. This is done by creating a secondary copy of each piece of data that is used in queries, if the node hosting a primary copy is unavailable.

It is important to note that as HA is simply creating a secondary copy of each piece of data, as such only one node failure can be sustained at a time (N-1) without data loss, regardless of the cluster size. If a node is down, a new secondary shard of the data is not created unless the original node is removed from the cluster permanently.

When a failed node becomes available again, a node is placed into recovery mode. During this time, data is synchronized with the other cluster members and when the synchronization is complete, the node is returned to active status:

Let's run through this process using the diagram above for an example, about how incoming data or the creation of a new object is handled in an HA configuration. In the above diagram, R3 represents our new resource, and R3' represents the secondary copy:

  1. A running adapter instance receives data from vCenter, as it is required to create a new resource for the new object, and a discovery task is created.
  2. The discovery task is passed to the cluster. This task could be passed to any one node in the cluster, and once assigned, that node is responsible for completing the task.
  3. A new analytics item is created for the new object in the GemFire cache on any node in the cluster.
  4. A secondary copy of the data is created on a different node to protect against failure.
  5. The system then saves the data to the Persistence layer. The object is created in the inventory (HIS), and its statistics are stored in the FSDB.
  6. A secondary copy of the saved (GemFire Persistence sharding) HIS and FSDB data is stored on a different node to protect against data loss.

The following diagram shows the same duplication process, but this time for a non-HA setup:

In a non-HA scenario, the following happens when a new object is discovered:

  1. A new object is discovered by the adapter, which is located in the Collector.
  2. The Collector receives the object’s metric and property information from the adapter.
  3. The Collector sends the object information to the Controller.
  4. The global database is updated with the new object type information. The object is created in the central database.
  5. The object is also cached by the analytics component.
  6. The Alerts database is updated with object information.