Book Image

Architecting Cloud Native Applications

By : Kamal Arora, Erik Farr, John Gilbert, Piyum Zonooz
Book Image

Architecting Cloud Native Applications

By: Kamal Arora, Erik Farr, John Gilbert, Piyum Zonooz

Overview of this book

Cloud computing has proven to be the most revolutionary IT development since virtualization. Cloud native architectures give you the benefit of more flexibility over legacy systems. This Learning Path teaches you everything you need to know for designing industry-grade cloud applications and efficiently migrating your business to the cloud. It begins by exploring the basic patterns that turn your database inside out to achieve massive scalability. You’ll learn how to develop cloud native architectures using microservices and serverless computing as your design principles. Then, you’ll explore ways to continuously deliver production code by implementing continuous observability in production. In the concluding chapters, you’ll learn about various public cloud architectures ranging from AWS and Azure to the Google Cloud Platform, and understand the future trends and expectations of cloud providers. By the end of this Learning Path, you’ll have learned the techniques to adopt cloud native architectures that meet your business requirements. This Learning Path includes content from the following Packt products: • Cloud Native Development Patterns and Best Practices by John Gilbert • Cloud Native Architectures by Erik Farr et al.
Table of Contents (24 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Summary


In this chapter, we discussed how we must realign our testing strategies to provide the necessary confidence within the context of cloud-native systems. We looked at how we need to shift testing to the left and make it an integral part of the deployment pipeline. Each task branch workflow implements just enough code to accomplish the task and all that code is completely tested. All automated testing is performed within the pipeline to ensure that we fail fast, and with a tight feedback loop. This necessitates testing components in isolation to account for the complexities of testing distributed systems. We leverage transitive testing techniques to accomplish end-to-end testing as an aggregation of multiple isolated tests. Test automation has transformed the traditional tester role into a test-engineering discipline. However, we still need to perform manual exploratory testing to help ensure that we are building the correct system.