Book Image

vSphere High Performance Cookbook

Book Image

vSphere High Performance Cookbook

Overview of this book

VMware vSphere is the key virtualization technology in today's market. vSphere is a complex tool and incorrect design and deployment can create performance-related problems. vSphere High Performance Cookbook is focused on solving those problems as well as providing best practices and performance-enhancing techniques. vSphere High Performance Cookbook offers a comprehensive understanding of the different components of vSphere and the interaction of these components with the physical layer which includes the CPU, memory, network, and storage. If you want to improve or troubleshoot vSphere performance then this book is for you! vSphere High Performance Cookbook will teach you how to tune and grow a VMware vSphere 5 infrastructure. This book focuses on tuning, optimizing, and scaling the infrastructure using the vSphere Client graphical user interface. This book will enable the reader with the knowledge, skills, and abilities to build and run a high-performing VMware vSphere virtual infrastructure. You will learn how to configure and manage ESXi CPU, memory, networking, and storage for sophisticated, enterprise-scale environments. You will also learn how to manage changes to the vSphere environment and optimize the performance of all vSphere components. This book also focuses on high value and often overlooked performance-related topics such as NUMA Aware CPU Scheduler, VMM Scheduler, Core Sharing, the Virtual Memory Reclamation technique, Checksum offloading, VM DirectPath I/O, queuing on storage array, command queuing, vCenter Server design, and virtual machine and application tuning. By the end of this book you will be able to identify, diagnose, and troubleshoot operational faults and critical performance issues in vSphere.
Table of Contents (15 chapters)
vSphere High Performance Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Using large pages in virtual machines


VMware ESXi provides 2MB memory pages, commonly referred to as "large pages" along with usual 4KB memory pages. ESXi will always try to allocate 2M pages for main memory and only on failure try for a 4K or small page. Virtual machines are large pages if 2M sequences of contiguous Memory Page Numbers are available. The idea is to reduce amount of page sharing and also increase the memory footprint of the virtual machines. The biggest benefit is of mitigating TLB-miss (Translation Lookaside Buffer) costs as much as possible for Nested Page Table enabled servers running ESX.

However, allocating memory in 2M chunk may cause the memory allocated to the VM to become fragmented. But as small pages are allocated by a guest and VM, these larger sequences need to be broken up.

So, if defragmentation occurs there could be enough memory to satisfy a large page request even when there is no 2M contiguous Memory Page Number's available. The defragmenter's job is to...